1014-03-1564 William C Calhoun* (wcalhoun@bloomu.edu), Bloomsburg University of Pennsylvania, Dept. of Math., Comp. Sci. and Stats., Bloomsburg, PA 17815. Degrees of Monotone Complexity.
Levin and Schnorr (independently) introduced the monotone complexity, $K_{m}(\alpha)$, of a binary string α. We use monotone complexity to define the relative complexity (or relative randomness) of reals. We define a partial ordering $\leq_{K_{m}}$ on 2^{ω} by $\alpha \leq_{K_{m}} \beta$ iff there is a constant c such that $K_{m}(\alpha \upharpoonright n) \leq K_{m}(\beta \upharpoonright n)+c$ for all n. The monotone degree of α is the set of all β such that $\alpha \leq_{K_{m}} \beta$ and $\beta \leq_{K_{m}} \alpha$. We show the monotone degrees contain an antichain of size $2^{\aleph_{0}}$, a countable dense linear ordering, and a minimal pair. We also show there is no minimal computably enumerable monotone degree.

Downey, Hirschfeldt, LaForte, Nies and others have studied a similar structure, the H-degrees, where H is the prefixfree Kolmogorov complexity. A minimal pair of H-degrees was constructed by Csima and Montalbán. Of particular interest are the noncomputable trivial reals, first constructed by Solovay. We define a real to be $\left(K_{m}, H\right)$-trivial if for some constant $c, K_{m}(\alpha \upharpoonright n) \leq H\left(1^{n}\right)+c$ for all n. We show every K_{m}-minimal real is $\left(K_{m}, H\right)$-trivial. (Received September 28, 2005)

