1014-05-1083 Jeffrey S. Powell* (jspowel@emory.edu), Department of Mathematics \& Computer Science, Emory University, 400 Dowman Drive, Atlanta, GA 30322, Ralph J. Faudree (rfaudree@memphis.edu), Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, and Ronald J. Gould (rg@mathcs.emory.edu), Department of Mathematics \& Computer Science, Emory University, 400 Dowman Drive, Atlanta, GA 30322. Menger Path-Systems and Minimum Graph Size. Preliminary report.
A graph satisfies property $P_{d, m}$ if there are m vertex-disjoint paths of length d or less between every pair of vertices in the graph. A collection of such paths is called a Menger path-system. We consider $\operatorname{Ext}\left(n ; P_{d, m}\right)$, which is the minimum size of a graph on n vertices that satisifies $P_{d, m}$. Very few values of $\operatorname{Ext}\left(n ; P_{d, m}\right)$ are known. We show that $\operatorname{Ext}\left(n ; P_{2, m}\right)=\frac{n(m+k)}{2}$ for certain graphs with $n<m+2 \sqrt{m}+1$. We also show improved lower and upper bounds on $\operatorname{Ext}\left(n ; P_{d, m}\right)$ when $d>4$ and n is sufficiently large. (Received September 27, 2005)

