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In this talk we discuss the lattice-theoretical consequences of the authors’ recent investigations of forbidden configurations

in Priestley spaces. A sample result goes like this. Let D designate the category of bounded distributive lattices, and

for finite L ∈ D let Forb(L) designate the class of members of D which do not have L as a quotient. Insert an annoying

technical hypothesis (ATH), namely that the Priestley space of L has a greatest element. Then the following are equivalent.

(1) Forb(L) is axiomatizable, i.e., there is a finite set of formulas in the first-order language of D whose satisfaction is

equivalent to membership in Forb(L). (2) Forb(L) is productive. (3) L is relatively normal, i.e., every pair of elements

can be disjointified. (4) The Priestley space of L is a tree. The theorem is surely true without the ATH, with requirement

(4) replaced by the weaker condition that the Priestley space of L is acyclic. The authors can prove most, but not all, of

the general version. (Received September 28, 2005)
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