Convex Sets. Preliminary report.
In [I], it was observed that geometric arrangements of (finitely many) generators in the lattice of convex subsets in the plane (and hence of a Hilbert Space) can have a profound effect on the lattice generated. Specifically, some fairly innocuous-looking changes can lead from a situation in which the lattice generated is finite, to a situation in which the lattice so generated is infinite. We examine the example of a triangle with three finite line segments extending outward from each side. The example of the equilateral triangle will lead to the following conjecture:

Let C denote the lattice of closed convex subsets of the plane, let Δ be an equilateral triangle with sides s 1 , s 2 , s3, and let 11,12 , 13 be line segments lying outside the interior of Δ, with $11 \cap \mathrm{~s} 1=\mathrm{p} 1, \mathrm{l} 2 \bigcap \mathrm{~s} 2=\mathrm{p} 2, \mathrm{l} 3 \bigcap \mathrm{~s} 3=\mathrm{p} 3$, such that $11 \perp \mathrm{~s} 1,12 \perp \mathrm{~s} 2$, and $13 \perp \mathrm{~s} 3$. Then the sublattice of C that is generated by $\{\Delta, 11,12,13\}$ is finite.

Conditions for the generation of a finite sublattice will be discussed for an equilateral triangle and all other regular n-gons replacing the triangle.
[I] M. Insall: "Geometric Conditions for Local Finiteness of a Lattice of Convex Sets", Mathematica Moravica, Volume 1. 1997 (Received September 28, 2005)

