1014-11-461Omer Yayenie*, Department of Math/Stat, Murray State University, Murray, KY 42071.
Hyperbolically convex standard fundamental domain of a subgroup of a modular group.

The two major ways of obtaining fundamental domains for discrete subgroups of SL(2, R) are the Dirichlet Polygon construction and Ford's construction. Each of these two methods yield a hyperbolically convex fundamental domain for any discrete subgroup of SL(2, R).

However, the Dirichlet polygon construction and Ford's construction are not well adapted for the actual construction of a hyperbolically convex fundamental domain due to their nature of construction.

A third-and most important method of obtaining a fundamental domain is through the use of a right coset decomposition as described below. Let Γ_2 be a subgroup of Γ_1 and $\Gamma_1 = \Gamma_2 \cdot \{L_1, L_2, \dots, L_m\}$ If F is a fundamental domain of the bigger group Γ_1 , then the set $R_{\Gamma} = \left(\overline{\bigcup_{k=1}^m L_k(F)}\right)^o$ is a fundamental domain of Γ_2 . One can ask at this juncture that is it possible to choose the right coset suitably so that the set \mathcal{R}_{Γ} is hyperbolically convex? We will answer this question positively for normal subgroups of $\Gamma_1 = \Gamma(1)$ and $F = \{\tau \in H : |\tau| > 1 \& |Re(\tau)| < \frac{1}{2}\}$. Also we will extend this for normal subgroups of Hecke discrete groups. (Received September 16, 2005)