1014-13-1698 Jeff Mermin (mermin@math.cornell.edu), Malott Hall, Mathematics Department, Cornell University, Ithaca, NY 14853, Irena Peeva (ivp1@cornell.edu), Malott Hall, Mathematics Department, Cornell University, Ithaca, NY 14853, and Michael Stillman* (mike@math.cornell.edu), Malott Hall, Mathematics Department, Cornell University, Ithaca, NY 14853. The Lex-plus-powers conjecture for ideals containing the squares of the variables.

Let $S=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field k. We study the graded Betti numbers of homogeneous ideals I which contain the squares $P=\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$. Our main result is the lex-plus-powers conjecture for such ideals (due to Herzog and Hibi, and later in a more general form to Evans): We prove that if k has characteristic zero, and $L \subset S$ is a squarefree lexicographic ideal such that I and the lex-plus-squares ideal $L+P$ have the same Hilbert function, then the graded Betti numbers of $L+P$ are greater than or equal to those of I. (Received September 28, 2005)

