1014-16-932 **Darren Funk-Neubauer*** (neubauer@math.wisc.edu), 480 Lincoln Drive, Madison, WI 53706-1388. Leonard Pairs and Representations of Quantum Algebras. Preliminary report. Let V be a finite dim. vector space over an alg. closed field \mathbb{K} . Let q be a nonzero scalar in \mathbb{K} that is not a root of unity. Consider a pair on linear maps $A: V \to V, A^*: V \to V$ which satisfy the following:

- 1. There exists a basis for V with respect to which the matrix representing A is diagonal and the matrix representing A^* is irreducible tridiagonal.
- 2. There exists a basis for V with respect to which the matrix representing A^* is diagonal and the matrix representing A is irreducible tridiagonal.

We call such a pair a Leonard pair on V. We assume there exist nonzero scalars a, b, c in K such that the eigenvalues of A (resp. A^*) are aq^{2i-d} (resp. $bq^{2i-d} + cq^{d-2i}$) for $0 \le i \le d$. We discuss how such Leonard pairs are divided into two families. For one family we use the Leonard pair to construct two irreducible $U_q(\mathfrak{sl}_2)$ -module structures on V and describe how these modules are related to the actions of A and A^* . For the other family we use the Leonard pair to construct an irreducible $U_q(\mathfrak{sl}_2)$ -module structure on V and describe how this module is related to the actions of A and A^* . (Received September 26, 2005)