1014-16-932 Darren Funk-Neubauer* (neubauer@math.wisc.edu), 480 Lincoln Drive, Madison, WI 53706-1388. Leonard Pairs and Representations of Quantum Algebras. Preliminary report.
Let V be a finite dim. vector space over an alg. closed field \mathbb{K}. Let q be a nonzero scalar in \mathbb{K} that is not a root of unity. Consider a pair on linear maps $A: V \rightarrow V, A^{*}: V \rightarrow V$ which satisfy the following:

1. There exists a basis for V with respect to which the matrix representing A is diagonal and the matrix representing A^{*} is irreducible tridiagonal.
2. There exists a basis for V with respect to which the matrix representing A^{*} is diagonal and the matrix representing A is irreducible tridiagonal.

We call such a pair a Leonard pair on V. We assume there exist nonzero scalars a, b, c in \mathbb{K} such that the eigenvalues of $A\left(\right.$ resp. $\left.A^{*}\right)$ are $a q^{2 i-d}$ (resp. $b q^{2 i-d}+c q^{d-2 i}$) for $0 \leq i \leq d$. We discuss how such Leonard pairs are divided into two families. For one family we use the Leonard pair to construct two irreducible $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$-module structures on V and describe how these modules are related to the actions of A and A^{*}. For the other family we use the Leonard pair to construct an irreducible $U_{q}\left(\mathfrak{s l}_{2}\right)$-module structure on V and describe how this module is related to the actions of A and A^{*}. (Received September 26, 2005)

