1014-20-1163 Chiru Bhattacharya* (cbhattacharya@rmc.edu), Department of Mathematics, Randolph-Macon College, Ashland, VA 23005. An analog of McCarthy's result.

The canonical homomorphism from F_n (free group on *n* letters) to $F_n/[F_n, F_n]$ induces a homomorphism from Aut F_n to Aut $(F_n/[F_n, F_n]) \cong GL_n(\mathbb{Z})$. This map is surjective and gives rise to an exact sequence that is analogous to another exact sequence described below.

If S is a connected closed orientable surface of genus $g \ge 3$ and \mathcal{M}_S is the mapping class group of S, one can view \mathcal{M}_S algebraically as the group of outer automorphisms of the fundamental group Π_g of S. Also, $\Pi_g^{ab} \simeq \mathbb{Z}^{2g}$, and the action of \mathcal{M}_S on Π_g^{ab} induces a homomorphism $\mathcal{M}_S \longrightarrow GL_{2g}(\mathbb{Z})$, the image of which is the symplectic group $Sp_{2g}(\mathbb{Z})$. This gives rise to an exact sequence.

J.D.McCarthy showed that for any subgroup of finite index $H \subset \mathcal{M}_S$ containing the Torelli subgroup \mathcal{T}_S , the group $H^1(H)$ is trivial.

Using the analogy of the exact sequences I will present a theorem that gives a direct analog of McCarthy's result for Aut F_n . (Received September 27, 2005)