1014-35-795 **W. Y. Chan*** (wchan@semo.edu), Department of Mathematics, Southeast Missouri State University, Cape Girardeau, MO 63701-6700. A Degenerate Semilinear Parabolic Problem with Solution Blows Up at the Boundary.

Let $T \leq \infty$, q, γ, a and p be constants such that $q \geq 0, \gamma \in [0, 1), a > 0$ and p > 1. We study existence and blow-up of the solution of the following degenerate first initial-boundary value problem

$$x^{q}u_{t} = (x^{\gamma}u_{x})_{x} + u^{p} \text{ for } (x,t) \in (0,a) \times (0,T),$$

$$u(x,0) = u_0(x)$$
 for $x \in [0,a]$, $u(0,t) = 0 = u(a,t)$ for $t \in (0,T)$.

where $u_0(x)$ is a nonnegative function and $u_0(x) \in C^{2+\alpha}([0,a])$ for some $\alpha \in (0,1)$. where $u_0(x)$ is a nonnegative function and $u_0(x) \in C^{2+\alpha}(\overline{\Omega})$ for some $\alpha in(0,1)$. (Received September 24, 2005)