1014-55-1018 David J. Pengelley* (davidp@nmsu.edu), Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003, and Frank Williams (frank@nmsu.edu), Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003. Global Structure of Algebras of Invariants over the Steenrod Algebra and its Generalizations.

Both the mod p cohomology of spaces and mod p algebras of invariants are unstable algebras over the Steenrod algebra \mathcal{A} . Some arise in both settings, like the cohomology of classifying spaces BO, BU, while others, such as the Dickson algebras of GL_n invariants, emerge primarily as invariants. While such \mathcal{A} -algebras often seem intractable as \mathcal{A} -modules, we find that they often have simple presentions as unstable \mathcal{A} -algebras via minimal generators and relations. We work with unstable \mathcal{A} -modules using the Kudo-Araki-May (K-A-M) algebra \mathcal{K} of certain 'lower' operations as originally defined by Steenrod, before their conversion to 'Steenrod operations'. \mathcal{K} is particularly suited to describing unstable modules.

We also find that, for p odd, Steenrod's original operations encompassed more than those converted for topology. This larger *algebraic* K-A-M algebra may yield expanded connections to invariants. In particular, Madsen and May proved that together the Dickson algebras are the dual of the *topological* K-A-M algebra \mathcal{K} ; we will discuss how invariants under subgroups of GL_n may yield duals coming from the larger *algebraic* K-A-M algebra. (Received September 26, 2005)