1014-Z1-610 Lynne L Doty (Lynne.Doty@marist.edu), Mathematics Department, Poughkeepsie, NY 12601, and Kevin K Ferland* (kferland@bloomu.edu), Mathematics Department, Bloomsburg, PA 17815. Constructing 5-Regular 5/2-Tough Graphs.

For $\lceil 5 / 2\rceil \leq m<3 n$, the maximum toughness among graphs with n vertices and m edges is $5 / 2$ in all but finitely many cases. This is in stark contrast with the fact that there is a $3 / 2$-tough graph on n vertices and $\lceil 3 n / 2\rceil$ edges if and only if $n=0,5$ modulo 6 . However, constructions related to those used in the cubic case can also be employed in the 5 -regular case. Moreover, our constructions provide an infinite family of graphs that are supertough and not $K_{1,3}$-free. (Received September 21, 2005)

