1023-05-1057 Alison B Miller* (miller5@fas.harvard.edu), 320 Dunster House Mail Center, Cambridge, MA 02138. Asymptotic Bounds for Permutations Containing Many Different Patterns.
We say that a permutation $\sigma \in S_{n}$ contains a permutation $\pi \in S_{k}$ as a pattern if some subsequence of σ has the same order relations among its entries as π. We improve on results of Wilf and Coleman that bound the asymptotic behavior of $\operatorname{pat}(n)$, the maximum number of distinct patterns of any length that can be contained in a permutation of length n. We prove that $2^{n}-O\left(n^{2} 2^{n-\sqrt{2 n}}\right) \leq \operatorname{pat}(n) \leq 2^{n}-\Theta\left(n 2^{n-\sqrt{2 n}}\right)$ by estimating the amount of redundancy due to patterns that are contained multiple times in a given permutation. This settles a conjecture of Bóna by showing that $\lim _{n \rightarrow \infty} \frac{\operatorname{pat}(n)}{2^{n}}=1$. We also consider the question of superpatterns, which are permutations that contain all patterns of a given length k. We give a simple construction that shows that L_{k}, the length of the shortest k-superpattern, is at most $\frac{k(k+1)}{2}$. This may lend evidence to a conjecture of Eriksson et al. that $L_{k} \sim \frac{k^{2}}{2}$. (Received September 24, 2006)

