1023-05-1125 Daniel Kral and Robin Thomas* (thomas@math.gatech.edu), School of Mathematics, Georgia Tech, Atlanta, GA 30332. Coloring graphs on surfaces with all faces even. Preliminary report.
Let G be a graph drawn (without crossings) on a fixed surface such that every face is bounded by a walk of even length, and let k be an integer. Can G be properly k-colored? This question is interesting only when $k=3$. We settle that case by proving a coloring extension theorem that implies a polynomial-time algorithm. (Received September 25, 2006)

