Let V be a non-empty set where $\phi: V \rightarrow Z^{+}$and $D \subseteq Z^{+}$. Ferrara, Kohayakawa and Rödl define the Distance Graph (V, ϕ, D) to have vertex set V and edge set defined by $(u, v) \in E(G) \Longleftrightarrow|\phi(u)-\phi(v)| \in D$. Let $D_{e}(G)=\min _{(V, \phi, D) \cong G}|D|$. They showed that for almost all n-vertex graphs G,

$$
D_{e}(G) \geq \frac{1}{2}\binom{n}{2}-(1+o(1)) n^{3 / 2}(\log n)^{1 / 2}
$$

Let V be a non-empty set where $\phi: V \rightarrow Z^{+}$and $D_{\text {mod }} \subseteq Z^{+} \times Z^{+}$. We define the Modular Distance Graph (V, ϕ, D) to be the graph with vertex set V and edge set defined by $(u, v) \in E(G) \Longleftrightarrow|\phi(u)-\phi(v)| \equiv a(\bmod b)$ for some $(a, b) \in$ $D_{\text {mod }}$. Let $D_{\text {mod }}(G)=\min _{\left(V, \phi, D_{\text {mod }}\right) \cong G}\left|D_{\text {mod }}\right|$.
We present a number of results about this construction, principally
Theorem: For any graph G with max degree Δ,

$$
D_{m o d}(G) \leq \frac{1}{2} \Delta+\left(O\left(\Delta^{\frac{2}{3}}(\log \Delta)^{\frac{1}{3}}\right)\right)
$$

(Received September 25, 2006)

