1023-05-304 Michael Z. Spivey* (mspivey@ups.edu), Department of Math and Computer Science, University of Puget Sound, Tacoma, WA 98416. Combinatorial Sums via Finite Differences.
We present a new approach to evaluating certain combinatorial sums by using finite differences. Let $\left\{a_{k}\right\}_{k=0}^{\infty}$ and $\left\{b_{k}\right\}_{k=0}^{\infty}$ be sequences with the property that $\Delta b_{k}=a_{k}$ for $k \geq 0$. Let $G(n)=\sum_{k=0}^{n}\binom{n}{k} a_{k}$, and let $H(n)=\sum_{k=0}^{n}\binom{n}{k} b_{k}$. We derive an expression for $G(n)$ in terms of $H(n)$ and for $H(n)$ in terms of $G(n)$. These expressions allow certain kinds of binomial sums to be evaluated fairly easily. We then extend our approach to handle binomial sums of the form $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} a_{k}$, $\sum_{k}\binom{n}{2 k} a_{k}$, and $\sum_{k}\binom{n}{2 k+1} a_{k}$, as well as sums involving unsigned and signed Stirling numbers of the first kind, $\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} a_{k}$ and $\sum_{k=0}^{n} s(n, k) a_{k}$. (Received September 04, 2006)

