Steve Butler* (sbutler@math.ucsd.edu), Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112. The Moebius transform of the triangular numbers.
We give an interpretation for the Moebius transform of the triangular numbers. In particular we will show that if $\mu(n)$ is the Moebius function and T_{n} is the nth triangular number,

$$
|\{(x, y): 1 \leq x \leq y \leq n, \operatorname{gcd}(x, y, n)=1\}|=\sum_{d \mid n} \mu(n / d) T_{d}
$$

This can be generalized to higher dimensions, and as a simple application we will show that

$$
\left|\left\{\left(a_{1}, \ldots, a_{k}\right): 1 \leq a_{1} \leq \cdots \leq a_{k} \leq n, \operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=1\right\}\right|=\sum_{i \geq 1} M(\lfloor n / i\rfloor)\binom{i+k-2}{k-1}
$$

where $M(n)$ is Mertens function with the convention that $M(0)=0$. (Received September 12, 2006)

