Let G be an abelian group of exponent m. If S is a sequence of m elements of G, and if no subsequence of S sums to zero, what is the least number of distinct sums of subsequences that can occur? This question was first discussed in a paper by W. D. Gao, in which he showed that for groups with exponent m relatively prime to six, the lower bound is always $2 m-1$. In this paper, we conjecture that this lower bound holds for all groups, and we prove that it holds for several infinite families. (Received September 23, 2006)

