of Cartesian Products of Graphs. Preliminary report.
The question of whether a graph can be partitioned into k independent dominating sets is considered. For $k=3$, it is shown that a graph G can be partitioned into three independent dominating sets if and only if the cartesian product $G \square K_{2}$ can be partitioned into three independent dominating sets. The graph K_{2} can be replaced by any graph H such that $f: Q_{n} \rightarrow H$, where f is a type-II graph homomorphism.

The cartesian product of two trees is considered, as well as the complexity of partitioning a bipartite graph into three independent dominating sets, which is shown to be NP-complete. For other values of k, repeated cartesian products are considered, leading to a result that shows for what values of k the hypercubes can be partitioned into k independent dominating sets. (Received September 23, 2006)

