Aaron Lauve* (lauve@lacim.uqam.ca), LaCIM, University of Quebec at Montreal, Case Postale 8888, succursale Centre-ville, Montreal, Quebec H3C 3P8, Canada, and Christophe
Reutenauer, LaCIM (UQAM). On novel ways to invert a matrix. Preliminary report.
Given an $n \times n$ matrix A over a (not necessarily commutative) field F, the n^{2} equations $A X=I$, if solvable, define an inverse for A in $\operatorname{End}_{F}\left(F^{n}\right)$. For us, it is a small wonder that (i) the solution is unique, and (ii) the same solution is reached solving the n^{2} different equations $X A=I$. We are led to the following question: from the $2 n^{2}$ equations mentioned above, which choices of n^{2} yield a unique solution X ? The case $n=2$ is already interesting, involving a (reducible) Coxeter group of order 8, a nice lemma of Cohn's on the roots of noncommutative polynomials, ... (Received July 30, 2006)

