1023-11-1030

Bo-Hae Im* (imbh@cau.ac.kr), Dept.of Mathematics, Chung-Ang University, 221
Heukseok-dong, Dongjak-gu, Seoul, 156-756, South Korea, and Florian Breuer
(fbreuer@sun.ac.za), Mathematics Dept., University of Stellenbosch, 7602 Stellenbosch,
Stellenbosch, South Africa. Heegner points and the rank of elliptic curves over large extensions of global fields.

Let k be a global field, \overline{k} a separable closure of k, and G_k the absolute Galois group $\operatorname{Gal}(\overline{k}/k)$ of \overline{k} over k. For every $\sigma \in G_k$, let \overline{k}^{σ} be the fixed subfield of \overline{k} under σ . Let E/k be an elliptic curve over k. We show that for each $\sigma \in G_k$, the Mordell-Weil group $E(\overline{k}^{\sigma})$ has infinite rank in the following two cases. Firstly when k is a global function field of odd characteristic and E is parametrized by a Drinfeld modular curve, and secondly when k is a totally real number field and E/k is parametrized by a Shimura curve. In both cases our approach uses the non-triviality of a sequence of Heegner points on E defined over ring class fields. (Received September 24, 2006)