1023-11-1083 Daniel Mertz Kane* (dankane@mit.edu), Random Hall, 290 Massachusetts Avenue, Cambridge, MA 02139. The number of ways of expressing t as a binomial coefficient.
For $t>1$, let $N(t)=|\{(n, m) \in \mathbb{N}: t=(n / / m)\}|$ be the number of ways of expressing t as a binomial coefficient. Erdös proved using number theoretic methods that $N(t)=O\left(\frac{\log t}{\log \log t}\right)$. We discuss an improvement of this bound using analytic methods bounding the number of points on smooth curves to obtain $N(t)=O\left(\frac{\log t \log \log \log t}{(\log \log t)^{2}}\right)$. (Received September 25, 2006)

