Jason Worth Martin* (jason.worth.martin@gmail.com), MSC 1911 (305 Roop Hall), Dept. of Mathematics and Statistics, James Madison University, Harrisonburg, VA 22807. An improvement on the known bounds of discriminants of number fields.
Given a number field, K, of degree n over the rationals, with discriminant d_{K}, and with r_{1} real embeddings and r_{2} pairs of complex embeddings, the root discriminant of K is $r d_{K}=\sqrt[n]{\left|d_{K}\right|}$. Putting $t=r_{1} / n$ we define $\alpha(t)$ as the limit infimum as the degree goes to infinity of the root discriminant of all number fields with $r_{1} / n=t$. In 1976 Odlyzko showed that, assuming GRH, $\alpha(t) \geq(44.7)^{1-t}(215.3)^{t}$. In 1978-79 Martinet produced examples showing $\alpha(0)<92.3$ and $\alpha(1)<1058.6$, and in 2000, Hajir and Maire extended Martinet's technique to produce examples showing $\alpha(0)<82.2$ and $\alpha(1)<954.3$. In this work, we give a mechanism for producing examples similar to Martinet's but for fields of mixed signature and use this method to produce upper bounds for $\alpha(t)$ with $t=1 / 4,1 / 3,1 / 2,3 / 5,2 / 3,5 / 7$, and 1 . In particular we show $\alpha(3 / 5)<342.42$ and $\alpha(1)<913.50$, a significant improved over known bounds. (Received September 26, 2006)

