1023-11-348 Nathan Kaplan* (nathank@princeton.edu), 933 President Street, Brooklyn, NY 11215. Cyclotomic Polynomials of Order Three and Maximal Height of Divisors of $x^{n}-1$.
The nth cyclotomic polynomial, Φ_{n}, is the monic polynomial whose roots are the primitive nth roots of unity. The problem of determining the maximum size of coefficients of cyclotomic polynomials has been studied extensively. We say that a cyclotomic polynomial has order three if n is the product of three distinct primes, $p<q<r$. Let $A(n)$ be the largest absolute value of a coefficient of Φ_{n}. We will discuss some new results concerning the function $A(p q r)$. For each pair of primes $p<q$, we will give an infinite family of r such that $A(p q r)=1$. We will also discuss the periodicity of $A(p q r)$. We will then discuss the problem of determining the maximal coefficient of any integral polynomial dividing $x^{n}-1$. We will give a new bound for the maximal height of a divisor of $x^{n}-1$ for general n. We will then give more explicit results when n is equal to $p^{2} q, p q^{2}$, or $p q r$. (Received September 08, 2006)

