Edray Herber Goins* (egoins@math.purdue.edu), Mathematical Sciences Building, 150 North University Street, West Lafayette, IN 47907-2067. There exist infinitely many rational Diophantine 6 -tuples - almost. Preliminary report.
A set $\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$ of rational numbers is said to be a rational Diophantine n-tuple if $m_{i} m_{j}+1$ is a perfect square for $i \neq j$. In the late 1700's, Euler showed that there exist infinitely many rational Diophantine 5 -tuples. It is not known whether there exist infinitely many (nontrivial) rational Diophantine 6-tuples, although Gibbs found 45 examples in 1999.

In this talk, we use properties of the elliptic curve $E_{k}: y^{2}=\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)$ to explain how to find an infinite family of nontrivial 6 -tuples. We are motivated by Dujella's results from 2001 using properties of elliptic curves. In the process, we find families of elliptic curves having large rank for the torsion subgroup $Z_{2} \times Z_{4}$. This is a work in progress. (Received September 13, 2006)

