1023-13-518 Hal Schenck* (schenck@math.tamu.edu), Mathematics Department, Texas A&M University, College Station, TX 77843-3368, and Graham Denham (gdenham@uwo.ca), Mathematics Department, University of Western Ontario, London, Ontaria, Canada. A spectral sequence stratification of cohomology jump loci. Preliminary report.

For a complex hyperplane arrangement in \mathbb{C}^{ℓ} with complement X(A) and cohomology ring A, the resonance variety $R^{k}(A)$ is the loci of $a \in A_{1}$ such that the cohomology $H^{k}(A, \wedge a)$ of the Aomoto complex is nonvanishing. For example, $R^{1}(A)$ is the union of the tangent cones at **1** to the characteristic varieties of $\pi_{1}(X(A))$. Recent work shows that $R^{1}(A) = V(ann(Ext^{\ell-1}(F(A), S)))$, where S is a symmetric algebra and F(A) is a finitely generated, graded S-module depending only on the cohomology ring of X(A).

We generalize this result on the cohomology ring of an arrangement complement in two directions; we replace F(A) with an arbitrary S-module M; if $pdim(M) = \ell$ then

$$R^{k}(M) = \bigcup_{k' \le k} V(ann(Ext^{\ell-k'}(M,S))),$$

where $R^k(M)$ is defined in terms of Koszul cohomology. The Cartan–Eilenberg spectral sequence gives

$$Ext^{i}(Ext^{j}(M,S),S) \Rightarrow M,$$

yielding relationships between the $R^k(M)$ related to the filtration of M. (Received September 15, 2006)