Benjamin J Howard* (bhoward@ima.umn.edu), I.M.A., University of Minnesota, 400 Lind Hall, 207 Church St SE, Minneapolis, MN 55455, and John Millson (jjm@math.umd.edu), Andrew Snowden (asnowden@math.princeton.edu) and Ravi Vakil (vakil@math.stanford.edu). The space of n ordered points on the line is cut out by simple quadrics if n is not six.
We study the projective invariants of n labelled points on the projective line - that is, polynomials in the homogeneous coordinates $X_{i}, Y_{i}(1 \leq i \leq n)$ which are invariant under the diagonal action of $S L(2)$. We shall assume the i-th point has weight w_{i}. Let R_{w} denote the graded ring of projective invariants, where $w=\left(w_{1}, \ldots, w_{n}\right)$.

By the classical theorem of Kempe (1894) we know that R_{w} is generated in degree one for any number of points n and weighting w, provided that the total weight $w_{1}+\cdots+w_{n}$ is even. (If the total weight is odd, then R_{w} is zero in odd degree components, so we exclude this case for simplicity.) The generators correspond to directed multigraphs with vertex set $\{1, \ldots, n\}$ such that $\operatorname{deg}(i)=w_{i}$ for each i.

We show that $\operatorname{Proj}\left(R_{w}\right)$ is cut out scheme-theoretically by linear and quadric relations in the above graphs, unless $n=6$ and each $w_{i}=1$. We show by other means that the ideal of relations is generated in degree ≤ 4, for any n and w. (Received September 25, 2006)

