Giovanna Llosent*, Department of Mathematics, 14 MacLean Hall, The University of Iowa, Iowa City, IA 52242. Stable endomorphisms in characteristic two for the symmetric group S₄.

We start with a finite dimensional algebra λ over an algebraically closed field k of characteristic 2 such that λ is isomorphic to kS_4 , where S_4 is the symmetric group on 4 letters. The objective of the first part of this work is to find ALL λ -modules M(S) with underlying string S such that the stable endomorphism ring of M(S) over λ is isomorphic to k. The reason is that if this ring is isomorphic to k then M(S) has a well-defined universal deformation ring which is a complete local Noetherian ring with residue field k. First, we consider the simple λ -modules S_0 and S_1 . Then we analyze all non-simple finite λ -modules. Although the study of non-simple λ -modules is infinite at first, we show we can make it finite. We conclude that the stable endomorphism ring is k only for all modules K that are contained in the Auslander-Reiten component of the simple k-modules K that lie in the component of the AR-quiver of K0. (Received September 26, 2006)