1023-16-334 Bogdan Petrenko* (petrenko@math.tamu.edu), Department of Mathematics, Texas A\&M University, College Station, TX 77843-3368, and Said Sidki (sidki@mat.unb.br), Department of Mathematics, University of Brasilia, 70.910 Brasilia DF, Brazil. On pairs of matrices generating matrix rings and their presentations.
Let $M_{n}(\mathbb{Z})$ be the ring of n-by- n matrices with integral entries, and $n \geq 2$. This paper studies the set $G_{n}(\mathbb{Z})$ of pairs $(A, B) \in M_{n}(\mathbb{Z})^{2}$ generating $M_{n}(\mathbb{Z})$ as a ring. We use several presentations of $M_{n}(\mathbb{Z})$ with generators $X=\sum_{i=1}^{n} E_{i+1, i}$ and $Y=E_{11}$ to obtain the following consequences.

1. Let $k \geq 1$. The following rings have presentations with 2 generators and finitely many relations:
(a) $\bigoplus_{j=1}^{k} M_{m_{j}}(\mathbb{Q})$ for any $m_{1}, \ldots, m_{k} \geq 2$.
(b) $\bigoplus_{j=1}^{k} M_{n_{j}}(\mathbb{Z})$, where $n_{1}, \ldots, n_{k} \geq 2$, and the same n_{i} is repeated no more than three times.
2. Let D be a commutative domain of sufficiently large characteristic over which every finitely generated projective module is free. We use 4 relations for X and Y to describe all representations of the ring $M_{n}(D)$ into $M_{m}(D)$ for $m \geq n$.
3. We obtain information about the asymptotic density of $G_{n}(F)$ in $M_{n}(F)^{2}$ over different fields, and over the integers. (Received September 06, 2006)
