1023-22-1597 **Donald R King*** (d.king@neu.edu), 567 Lake Hall, Math Dept, Northeastern University, Boston, MA 02115. *Small spherical nilpotent orbits and K-types of Harish Chandra modules.* Preliminary report.

Let G be the adjoint group of a semisimple Lie algebra \mathfrak{g} and K be a maximum compact subgroup. $\mathfrak{g}_{\mathbb{C}}$ and $\mathfrak{k}_{\mathbb{C}}$ are the complexified Lie algebras of G and K. $\mathfrak{p}_{\mathbb{C}}$ is the usual complement to $\mathfrak{k}_{\mathbb{C}}$ in $\mathfrak{g}_{\mathbb{C}}$. $K_{\mathbb{C}}$, the complexification of K, acts on $\mathfrak{p}_{\mathbb{C}}$. Choose a nilpotent $e \in \mathfrak{p}_{\mathbb{C}}$ of height two and let \mathcal{O} be its $K_{\mathbb{C}}$ orbit. \mathcal{O} determines the $K_{\mathbb{C}}$ orbit of a semisimple element $x \in \mathfrak{k}_{\mathbb{C}}$. Choose a Borel subalgebra $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}$ of $\mathfrak{k}_{\mathbb{C}}$, where \mathfrak{h} is a Cartan subalgebra containing x. The ring \mathcal{R} of \mathfrak{n} -invariant regular functions on $\overline{\mathcal{O}}$, the Zariski closure of \mathcal{O} , is a polynomial algebra. Let μ_1, \ldots, μ_r be the highest weights of a set of generators. Suppose that \mathbf{X} is an irreducible ($\mathfrak{g}_{\mathbb{C}}$, K) module whose associated variety is $\overline{\mathcal{O}}$. If V is the 2-eigenspace of ad(x) on $\mathfrak{p}_{\mathbb{C}}$, then U(V), the enveloping algebra of V, acts locally injectively on \mathbf{X} and the asymptotic directions of the K-types of \mathbf{X} are determined by the μ_i . (Received September 26, 2006)