George R Grover* (groverg@mail.montclair.edu), 1 Normal Avenue, Montclair, NJ 07043, and Diana M Thomas (thomasdia@mail.montclair.edu), 1 Normal Avenue, Montclair, NJ 07043. Minimal Periods of Closed Curves in \mathbb{R}^n .

Let $\mathbf{x}(t)$ be a periodic solution with period T of the differential equation $\mathbf{x}'(t) = g(\mathbf{x}(t))$, where $\mathbf{x}(\mathbf{0}) \in X$. Let L be the minimum Lipschitz constant of g. In the case where X is a Banach space, Lasota and Yorke (1971) proved $TL \geq 4$, and, if X is a Hilbert Space, $TL \geq 2\pi$. The Banach space result was improved by Busenberg and Martelli (1986) to $TL \geq 6$, where 6 was found to be sharp in L_1 . The question whether the minimal period, TL, equalling 2π characterizes a Hilbert space remained open. We investigate what TL equals in \mathbb{R}^n in non-Euclidean norms and prove in \mathbb{R}^n the minimal period is 2π for any p or weighted p-norm. This result shows that a minimal period of 2π does not characterize a Hilbert space. (Received September 26, 2006)