1023-42-1615 Kenneth R. Hoover* (khoover@uoregon.edu), Department of Mathematics, University of Oregon, Eugene, OR 97403. The Dimension Function Of A Rationally Dilated Wavelet Associated With A GMRA.
For a wavelet $\Psi=\left\{\psi^{1}, \ldots, \psi^{L}\right\}$ in \mathbb{R}^{N} associated with an integer dilation A, we know that its dimension function \mathfrak{D}_{Ψ} is given by

$$
\mathfrak{D}_{\Psi}(\xi)=\sum_{l=1}^{L} \sum_{j=1}^{\infty} \sum_{k \in \mathbb{Z}^{N}}\left|\hat{\psi}^{l}\left(\left(A^{T}\right)^{j}(\xi+k)\right)\right|^{2}
$$

However, this is generally insufficient for the case when A is a rational dilation. For this case, we intend to show that if Ψ is associated with a GMRA (that is, the space of negative dilates of Ψ forms the core space of a generalized multiresolution analysis with dilation A) then its dimension function is given by

$$
\mathfrak{D}_{\Psi}(\xi)=\sum_{l=1}^{L} \sum_{j=1}^{\infty} \sum_{k \in \mathbb{Z}^{N}}\left|\hat{\psi}^{l}\left(\left(A^{T}\right)^{j}(\xi+\tilde{B} k)\right)\right|^{2}
$$

where \tilde{B} is such that $A^{T} \tilde{B} \mathbb{Z}^{N}=A^{T} \mathbb{Z}^{N} \cap \mathbb{Z}^{N}$. (Received September 26, 2006)

