1023-60-1400 Maxim J. Goldberg* (mgoldber@ramapo.edu), School of Theoretical and Applied Science, Ramapo College of NJ, 505 Ramapo Valley Rd., Mahwah, NJ 07430, and Seonja Kim (seonja777@hotmail.com), The Gildart Haase School of CS and Eng., Fairleigh Dickinson University, Mail Code T-BE2-01, Teaneck, NJ 07666. Using the pmf of the time to reach a subset of states in an irreducible finite Markov chain for clustering. Preliminary report.
We derive an explicit and easily computable formula for the probability mass function (pmf) of the random variable which counts the number of steps needed to reach a specified subset of the set of states in an irreducible finite Markov chain, from another specified subset (with a given initial probability distribution). As a consequence, we can compute the characteristic function of this random variable and then explicitly find all of its moments. Using the pmf allows us to define the separation at level α between two subsets to be the number of steps necessary to reach the second subset from the first with probability at least α (in general, the separation is not symmetric). This notion of separation is more flexible than using the mean first passage time, which usually suffers from a large variance, and seems to have been only applied to measure the separation between two individual states. We explore the possibility of using separation at level α to define natural neighborhoods of points and sets. (Received September 25, 2006)

