For the positive integer $n$, let $a_{n}$ count the number of compositions of $n$ where the last summand is odd. Then $a_{n}=$ $\left(\frac{1}{3}\right)(-1)^{n-1}+\left(\frac{2}{3}\right) 2^{n-1}=J_{n-1}$, where $J_{n}$ (for $n \geq 0$ ) denotes the $n$-th Jacobsthal number. The results we determine for these compositions include the following, where $n, k$ are positive integers: (1) $a_{n, k}$, the number of times the summand $k$ appears among the $a_{n}$ compositions of $n$; (2) $s_{n, k}$, the number of these compositions of $n$ where $k$ is the first summand; (3) the number of plus signs and the number of summands that appear among the $a_{n}$ compositions; (4) the number of runs that occur among the compositions; and (5) the numbers of levels, rises and descents that occur among the $a_{n}$ compositions. In addition, comparable results for the palindromes found among the $a_{n}$ compositions are examined. (Received September 14, 2006)

