We describe a method for generating all integer matrices X that satisfy the equation $A X=B$ for integer matrices A and B. The procedure is based on a modification of a theorem of Nathan Jacobson. We demonstrate that there exist invertible matrices, P and Q (with Q and Q^{-1} being integer matrices) for which $P A Q=I_{r}$, the diagonal matrix with 1's in the 1st r diagonal positions and 0 's elsewhere. Defining $\overline{P B}$ to be the matrix consisting of the first rows of $P B$ and U to be the matrix consisting of the remaining rows of $P B$, we prove that $A X=B$ for the integer matrix X if and only if a) $U=O$, a matrix of zeros, b) $\overline{P B}$ is an integer matrix and c) $X=Q\binom{\overline{P B}}{Z}$ for some integer matrix Z. The procedure for producing Q and $P B$ is demonstrated, including an example, thus providing an algorithm for finding all integer solutions to $A X=B$. (Received August 03, 2006)

