1023-Z1-1336

Dusty E. Sabo* (sabo@sou.edu), Southern Oregon University, Mathematics Department, 1250 Siskiyou Blvd., Ashland, OR 97520, and **Daniel Schaal** and **Jacent Tokaz**. *Disjunctive Rado Numbers for a pair of Schur Like Equations*.

Issai Schur established the following in 1916. For every integer t greater than or equal to two, there exists a least integer n = S(t) such that for every coloring of the integers in the set $\{1, 2, ..., n\}$ with t colors there exists a monochromatic solution to $x_1 + x_2 = x_3$. The integers S(t) are called Schur numbers. Around 1933 Richard Rado found a test to determine for which linear equations a similar statement would be true. Recently a related idea called a disjunctive Rado number has been defined. Suppose we are given two equations E_1 and E_2 , the disjunctive 2-color Rado number for E_1 and E_2 is the least integer n, provided it exists, such that for every coloring of the set $\{1, 2, ..., n\}$ with two colors there exists a monochromatic solution to either E_1 or E_2 . Let E_1 be the equation $x_1 + x_2 + c = x_3$. and let E_2 be the equation $x_1 + x_2 + k = x_3$, where c, k are natural numbers and $c \leq k$. Let R(c, k) represent the disjunctive 2-color Rado number for E_1 and E_2 . In this talk we will explore a few of the methods we used to obtain R(c, k) for all natural numbers c, k with $c \leq k$. (Received September 25, 2006)