1023-Z1-1830 Dennis P Walsh* (dwalsh@mtsu.edu), Box X070, Middle Tennessee State University, Murfreesboro, TN 37132. Amazing Explorations. Preliminary report.
We explore several properties of rectangular mazes. For integers $m$ and $n$ both greater than one, we define a $m \mathrm{x} n$ maze as a graph $G$ that satisfies the following 3 properties: (i) $G$ has vertex set $[0,1, \ldots, m] x[0,1, \ldots, n]$; (ii) $G$ consists of two trees; (ii) one tree has a path the sequentially connects $(0,0),(0,1), \ldots,(0, n),(1, n), \ldots,(m-1, n)$, and the other tree has a path that sequentially connects $(1,0),(2,0), \ldots,(m, 0),(m, 1), \ldots,(m, n)$. We illustrate a systematic construction of rectangular mazes, count the number of mazes for some $m$ and $n$, relate the counts to different mathematical objects, and present several other results about rectangular mazes. (Received September 26, 2006)

