Meeting: 999, Nashville, Tennessee, SS 6A, Special Session on Local and Homological Algebra

999-13-210 Sandra M. Spiroff* (spiroff@math.utah.edu), University of Utah, Department of Mathematics, Salt Lake City, UT 84112, and Florian Enescu and Catalin Ciuperca. Growth of Ideals.
Let J and I be a pair of ideals in a Noetherian ring such that $J^{p} \subset I^{q}$. Obviously $J^{p^{\prime}} \subset I^{q^{\prime}}$, for $q^{\prime} \leq q$ and $p^{\prime} \geq p$, but what can be said about the sup (p / q) ?

In terms of Algebraic Geometry, let I and J be two ideals of $R=\mathbb{C}[X, Y]$. Set $a_{p q}=\left\{r \in R: r \cdot J^{p} \subset I^{q}\right\}$. Set $C=\left\{(p, q): a_{p q}=R \Leftrightarrow J^{p} \subset I^{q}\right\} \subset \mathbb{Z} \times \mathbb{Z}$. Then C is a cone which contains the x-axis. The slope of the other bordering line is $\sup (q / p)$. R. Lazersfeld, for one, informally posed the following question: Is this slope rational?

In fact, this question has been affirmatively answered. D. Rees, L. Ratliff \& E. Rush, and P. Samuel, all contributed to the solution. However, despite this progress, no one has given a method to actually calculate this number. We seek to do this, approaching the problem from the point of view of the infimum of $\frac{p}{q}$. In the case where the polynomial ring is generated by only two variables and I and J are generated by monomials, we provide a definitive method to solve $\inf \left(\frac{p}{q}\right)$ when I has at most three generators. We give this algorithm and discuss how to generalize it. (Received August 23, 2004)

