On the feasible number of monochromatic triangles. Preliminary report.
It is well known that the Ramsey number $R(3,3)$ equals six; moreover, a two-coloring of the edges of a K_{6} must contain at least two monochromatic triangles. Motivated by this result and the landmark paper of Goodman in which the minimum number of monochromatic triangles in a two-coloring of the edges of K_{n} is exactly specified, we study the possible number T of such triangles. Our results include constructions that yield feasible values of T that are close to Goodman's minimum and the obvious maximum of $\binom{n}{3}$. A failed attempt to prove existence of constructions for values of T using a continuous distribution shed considerable light on the distribution of T in a random two-coloring and motivated constructions exhibiting the fact that T can be exactly equal, or close to, the expected value of T given a random two-coloring of the edges of K_{n} where edges are colored red or blue independently with probabilities p and $1-p$ respectively. (Received September 19, 2007)

