Jacques A Verstraete* (jacques@ucsd.edu), Department of Mathematics, University of California San Diego, La Jolla, CA 92093. Bootstrap percolation in regular graphs. Starting with a finite graph $G=(V, E)$, we independently activate each vertex of G with probability p. A dissemination process consists in each vertex being activated if at most one of its neighbours is not already active. The dissemination probability $\theta_{p}(G)$ is the probability that all vertices of the graph become activated in finite time. Equivalently, $\theta_{p}(G)$ is the probability that there is no cycle of inactive vertices. The dissemination threshold for a family \mathcal{G} of graphs, denoted $p_{c}=p_{c}(\mathcal{G})$, is defined as follows: for $p>p_{c}$ and each increasing sequences of graphs $\left(G_{n}\right)_{n \in \mathbb{N}}$ in $\mathcal{G}, \theta_{p}\left(G_{n}\right) \rightarrow 0$ whereas for $p<p_{c}$, there is an increasing sequence of graphs $\left(G_{n}\right)_{n \in \mathbb{N}}$ in $\mathcal{G}, \theta_{p}\left(G_{n}\right) \rightarrow 1$. Balogh and Pittel determined the value of $p_{c}\left(\mathcal{G}_{r}\right)$ when \mathcal{G}_{r} is the family of random r-regular graphs. We prove that $p_{c}(\mathcal{G})=\frac{1}{r-1}$ when \mathcal{G} is the family of all r-regular graphs, which shows that amongst all r-regular graphs, dissemination occurs most easily on random r-regular graphs. We pose some open questions on dissemination in general graphs. (Received September 19, 2007)

