Jeffrey O. Shallit (shallit@graceland.uwaterloo.ca), School of Computer Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada, and Zhi Xu* (z5xu@cs.uwaterloo.ca), School of Computer Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada. The Frobenius Problem in a Free Monoid.
The classical Frobenius problem is to compute the largest integer g not representable as non-negative integer linear combination of $x_{1}, x_{2}, \ldots, x_{k}$, where $x_{1}, x_{2}, \ldots, x_{k}$ are positive integers with $\operatorname{gcd}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=1$. We generalize this problem to the non-commutative setting of a free monoid, where $S=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ is a set of words over a finite alphabet Σ such that S^{*}, the set of all words factorizable into elements of S, is co-finite. We use techniques from automata theory and formal language theory to discuss the length of the longest word not in S^{*}.

Unlike the commutative case, where the bound on $g\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is quadratic, we are able to prove that the length of the longest word not in S^{*} is bounded above by

$$
\frac{2\left(2^{n}|\Sigma|^{n}-1\right)}{2|\Sigma|-1}
$$

where $n=\max _{1 \leq i \leq k}\left|u_{i}\right|$. Furthermore, we are able to show a tight (exponential) lower bound for the worst case of the form

$$
g\left(m, m|\Sigma|^{n-m}+n-m\right)
$$

in the case where $S \subseteq \Sigma^{m} \cup \Sigma^{n}$, where $0<m<n<2 m$.
We obtain upper and lower bounds for other generalizations of the Frobenius problem, such as the state complexity of S^{*}, and we also obtain results on the total number of words not in S^{*}, generalizing an 1884 result of Sylvester. (Received September 04, 2007)

