Hoffman and Singleton identified those values of r for which there can exist an r-regular graph of girth 5 and order $r^{2}+1$, namely $\mathrm{r}=2,3,7$, and possibly 57. It is also known that there are no r- regular graphs of girth 5 and order $\mathrm{r}^{2}+2$. We consider r-regular graphs of girth 5 and order $\mathrm{r}^{2}+3$. Using eigenvalue methods and Maple to factor large polynomials, we show the nonexistence of such graphs for $5<=\mathrm{r}<=11$. Similarly, no r-regular graphs of girth 7 and order $\mathrm{r}^{3}-\mathrm{r}^{2}+\mathrm{r}+1$ exist. On the other side, we give a simple construction for the Robertson graph of order 19 with $\mathrm{r}=4$, and for two graphs of order 12 with $r=3$. (Received September 14, 2007)

