College, 1600 Grand Ave., St Paul, MN 55105. List-coloring outerplanar graphs.
We prove that a 2-connected, outerplanar bipartite graph (respectively, outerplanar near-triangulation) with a list of colors $L(v)$ for each vertex v such that $|L(v)| \geq \min \{\operatorname{deg}(v), 4\}$ (resp., $|L(v)| \geq \min \{\operatorname{deg}(v), 5\}$) can be L-list-colored (except when the graph is K_{3} with identical 2-lists). These results are best possible for each condition in the hypotheses and bounds. We ask whether there are other classes of k-colorable graphs that can be L-list-colored when $|L(v)| \geq$ $\min \{\operatorname{deg}(v), k+1\}$ for each vertex v. (Received September 17, 2007)

