1035-11-109 Lenny Fukshansky* (lenny@cmc.edu), Department of Mathematics, Claremont McKenna College, Claremont, CA , and Sinai Robins, Department of Mathematics, Temple University, Philadelphia, PA. Frobenius number, covering radius, and well-rounded lattices.
Let $N>1$ be an integer, and let $1<a_{1}<\ldots<a_{N}$ be relatively prime integers. Frobenius number of this N-tuple is defined to be the largest positive integer that cannot be expressed as a linear combination of a_{1}, \ldots, a_{N} with nonnegative integer coefficients. We use techniques from the geometry of numbers to produce a new upper bound on the Frobenius number, which is symmetric in all of the a_{i} 's, by relating it to the covering radius of the null-lattice of the linear form with coefficients a_{1}, \ldots, a_{N}. We discuss some situations in which our bound is better than the previously known ones; in particular, this is the case when the lattice has equal successive minima, which we show happens infinitely often. (Received July 25, 2007)

