1035-11-1139 Joshua D. Batson* (joshua.batson@yale.edu), 20282 Carol Lane, Saratoga, CA 95070. Nathanson Heights in Finite Vector Spaces.
Let p be a prime, and let \mathbb{Z}_{p} denote the field of integers modulo p. The Nathanson height of a point $v \in \mathbb{Z}_{p}^{n}$ is the sum of the least nonnegative integer representatives of its coordinates. The Nathanson height of a subspace $V \subseteq \mathbb{Z}_{p}^{n}$ is the least Nathanson height of any of its nonzero points. In this paper, we resolve a conjecture of Nathanson [M. B. Nathanson, Heights on the finite projective line, International Journal of Number Theory, to appear], showing that on subspaces of \mathbb{Z}_{p}^{n} of codimension one, the Nathanson height function can only take values about $p, p / 2, p / 3, \ldots$ We show this by proving a similar result for the coheight on subsets of \mathbb{Z}_{p}, where the coheight of $A \subseteq \mathbb{Z}_{p}$ is the minimum number of times A must be added to itself so that the sum contains 0 . We conjecture that the Nathanson height function has a similar constraint on its range regardless of the codimension, and produce some evidence that supports this conjecture. (Received September 18, 2007)

