Given positive integers $a_{1}, a_{2}, \ldots, a_{k}$, with $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)=1$, the Coin Exchange Problem of Frobenius asks for the largest positive integer N such that the equation

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}=N \tag{1}
\end{equation*}
$$

has no solution in nonnegative integers $x_{1}, x_{2}, \ldots, x_{k}$. This number is usually represented by $g\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, and it is well known that $g\left(a_{1}, a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2}$. There are several results that pertain to the three variable and the more general case, including algorithms and results that apply to special cases.

The purpose of my talk is to present an old and unpublished result that gives a closed-form formula for $g\left(a_{1}, a_{2}, a_{3}\right)$. I will also briefly present results for the related problem of determining $n\left(a_{1}, a_{2}, a_{3}\right)$, that counts the number of N in (1) that are nonrepresentable by a_{1}, a_{2}, a_{3}. (Received September 20, 2007)

