1035-11-728 Luis A Medina* (lmedina@math.tulane.edu), Department of Mathematics, Tulane University, LA 70118, Tewodros Amdeberhan (tamdeber@tulane.edu), Department of Mathematics, Tulane University, New Orleans, LA 70118, and Victor H Moll (vhm@math.tulane.edu), Department of Mathematics, Tulane University, New Orleans, LA 70118. Asymptotic valuations of sequences satisying first order recurrences.
Let p be a prime and Q be a polynomial with integer coefficients. We discuss the asymptotics of the p-adic valuation of the sequence t_{n}, defined by $t_{n}=Q(n) t_{n-1}$ and the initial condition $t_{0}=1$. The example $Q(n)=n$ deals with Legendre's classical formula for the valuation of $n!$. The case $Q(n)=n^{2}+1$ is linked to the (conjectured non-integrality of the) sequence $x_{n}=\left(n+x_{n-1}\right) /\left(1-n x_{n-1}\right), x_{0}=1$ for $n \geq 5$.

Theorem. Assume that, for every possible zero of Q modulo p, the derivative does not vanish (modulo p). Then the p-adic valuation of t_{n} grows linearly in n. (Received September 14, 2007)

