1035-11-794 James Arthur Cipra* (cipra@math.ksu.edu), 1601 roof drive apt29, manhattan, KS 66502. Waring's number in a finite field. Preliminary report.
Let p be a prime, n be a positive integer, $q=p^{n}$ and \mathbb{F}_{q} be the field of q elements. The smallest s such that $x_{1}^{k}+x_{2}^{k}+\cdots+$ $x_{s}^{k}=\alpha$ has a solution for all $\alpha \in \mathbb{F}_{q}$ is called Waring's number, denoted $\gamma(k, p)$. I improve a bound on $\gamma(k, p)$ established by Winterhoff to the following: if $\gamma\left(k, p^{n}\right)$ exists then for $p^{\frac{n}{2}}<k<\left(p^{n}-1\right) / 2$ we have $\gamma\left(k, p^{n}\right)<\frac{6.2 n(2 k)^{1 / n} \ln (k)}{\left(\frac{p^{n-1}}{k}, p-1\right)}$. For the case when $k<p^{\frac{n}{2}}$, an extension of a result by Glibichuk gives $\gamma(k, p) \leq 8$. I also establish lower bounds for special cases in \mathbb{F}_{p}, namely for $t=\frac{p-1}{k}$ prime and $n \leq \phi(t), \gamma(k, p)>\left(\frac{n!p}{n+1}\right)^{\frac{1}{n}}-n$. (Received September 15, 2007)

