1035-15-434 Baodong Zheng and Liancheng Wang* (lwang5@kennesaw.edu), Department of Mathematics and Statistics, Kennesaw State University, 1000 Chanstain Rd., #1204, Kennesaw, GA 30004. Spectral Radius and Infinity Norm of Matrices.

Let $M_n(R)$ be the linear space of all $n \times n$ matrices over the real field R. For any $A \in M_n(R)$, let $\rho(A)$ and $||A||_{\infty}$ denote the spectral radius and the infinity norm of A, respectively. By introducing a class of transformations φ_a on $M_n(R)$, we show that, for any $A \in M_n(R)$, $\rho(A) < ||A||_{\infty}$ if $\varphi_{||A||_{\infty}}^n(A) = 0$. If $A \in M_n(R)$ is nonnegative, we prove that $\rho(A) < ||A||_{\infty}$ if and only if $\varphi_{||A||_{\infty}}^n(A) = 0$, and $\rho(A) = ||A||_{\infty}$ if and only if the transformation $\varphi_{||A||_{\infty}}$ preserves the spectral radius and the infinity norm of A. As an application, we investigate a class of linear discrete dynamic systems in the form of X(k+1) = AX(k). The asymptotical stability of the zero solution of the system is established by a simple algebraic method. (Received September 06, 2007)