1035-20-976 Roberto Palomba* (opalo3rh@umw.edu), Sean Droms and Janusz Konieczny. S_n -normal Semigroups of Partial Transformations.

Let X_n be a finite set with *n* elements. The semigroup P_n of partial transformations on X_n consists of all functions whose domain and image are included in X_n , with composition as the operation. It includes as its subsemigroups the symmetric group S_n , the full transformation semigroup T_n , and the symmetric inverse semigroup I_n , where S_n , T_n , and I_n consist, respectively, of the permutations, full transformations, and partial 1-1 transformations on X_n . The symmetric group S_n is the group of units of P_n , T_n , and I_n .

A subsemigroup S of P_n is called S_n -normal if it is closed under conjugations by permutations, that is, if for all $a \in S$ and $g \in S_n$, $g^{-1}ag \in S$. This concept generalizes the well-known notion of a normal subgroup. The S_n -normal subsemigroups of T_n were determined in 1976; and the S_n -normal subsemigroups of I_n were described in 1995. We complete the picture by providing a complete classification of the S_n -normal subsemigroups of P_n . In contrast with the classifications for T_n and I_n , the problem of classifying the S_n -normal subsemigroups of P_n does not reduce to finding the S_n -normalizers (S_n -normal semigroups generated by one element). (Received September 18, 2007)