1035-30-80 Scot Paul Childress* (10goto10@math.ucr.edu). Canonical Products Over the Roots of Certain Dirichlet Polynomials.
We define a (real) Dirichlet polynomial P of a complex variable s as an expression

$$
P(s)=m_{0} r_{0}^{s}+\cdots m_{M} r_{M}^{s},
$$

where the m_{j} 's are nonzero complex numbers and $0<r_{M}<\ldots<r_{0}$ are real numbers. Associated to a (real) Dirichlet polynomial P is its canonical product, G_{P}, given by

$$
G_{P}(s)=s^{h} \prod_{P(\omega)=0}\left(1-\frac{s}{\omega}\right) e^{s / \omega}
$$

(h denotes the multiplicity of 0 as a root of P). We use the Diophantine approximation scheme and the lattice/nonlattice dichotomy, expounded in Fractal Geometry and Complex Dimensions (Lapidus, Van Frankenhuysen), to show that G_{P} defines an entire function and that if $Q_{n} \rightarrow P$ is a lattice approximation of P then, with some minor adjustment, $G_{Q_{n}} \rightarrow G_{P}$ uniformly on compact sets. Classical techniques in the theory of infinite products are employed to derive the factorization formula

$$
P(s)=K_{P} e^{\kappa_{P} s} G_{P}(s)
$$

for lattice polynomials. We apply the obtained canonical product convergence results to recover the same factorization formula for nonlattice polynomials. (Received July 16, 2007)

